UAV動力系統先期研究

陳世雄¹、苗志銘²、劉宗龍³、方俊⁴、黃柏文⁴、王振源¹、管志宏⁵、王聰榮⁵、王俊琪⁶、 郭正雄⁷、盧昭暉⁷、賴維祥¹、容丕達¹、陳柏仲¹、柳毅駿³、莊樹民⁵、陳建章⁷、黃建寧⁷、 馬淮龍⁸、張鳴遠⁸、鄭敦仁⁸、王朝敬¹國立成功大學航空太空工程學系 ²國立屏東科技大學材料工程學系 ³國防大學理工學院動力暨系統工程學系 ⁴逢甲大學航太與系統工程學系 ⁶備光科技大學工業工程與管理學系 ⁶維傑科技公司 ⁷國立中興大學機械工程學系 ⁸中山科學研究院第一研究所

摘要

UAV的動力系統優劣關係到整體UAV飛行特性的發揮,以及飛行任務的成敗,中小型UAV之推進系統中仍以活 塞式引擎為主,本項國防科技計畫旨在針對未來UAV的引擎動力系統做整合型的開發研究, 鎖定的引擎為轉子 引擎,主要的原因為轉子引擎性能/重量比高,適合用於UAV做為動力,且基於涉及國防採購,未來貨源未必能 夠充份掌握,若能自行研究開發,則國防自主的能量建立更為鞏固,且此能量也有助於我汽車工業技術的提升, 本研究針對轉子引擎作設計分析,研究的範圍包含比較關鍵的幾個技術領域:變距螺槳、燃燒系統、氣封、引 擎缸體結構與散熱、逆向工程研究及工程管理等,本研究結合國內與引擎技術相關的專業教授參與,共同開發 技術,在本年度的研究中已針對以上關鍵技術領域進行研究,通過分析及計算結果與實驗結果相比對,証明研 究的正確性。

關鍵字:無人飛機,轉子引擎,變距螺槳,燃燒系統,氣封機構,工程管理,散熱裝置,逆向工程

1. 前言

UAV即為無人飛行載具系指無飛行員於載具上操 控,而僅藉由遙控或自主飛行等方式來執行如科學觀 測、戰場偵查或攻擊等特定任務的飛行器。早期無人 飛行載具之研製多著重於軍事上的需求,如射擊演習 用之靶機、欺騙敵軍偵測系統之誘敵機(Decoy)及無 人偵察機等,而近年來隨著資訊科技的迅速發展以及 各種新型感測元件的不斷問世,UAV則逐漸演化成具 多元用途之民用遥测飛行平臺,例如打擊犯罪、防恐 保安、救難滅火、交通監視、氣象觀察、天然災難勘 查…等方面之應用。整體而言,相於傳統人員操控之 飛行載具,UAV具有輕便、成本低、機動靈活、適用 性廣、隱蔽性良好、支援裝備少等特點,故近年已成 為航太產業的熱門項目之一。UAV之常用動力系統有 很多選擇,其中轉子引擎具有構造簡單、可靠度高、 保養容易、動力產生連貫、引擎運轉平穩、低噪音、 低震動、轉速越高性能愈佳以及具多元燃料能力等優 點,為許多知名UAV所採用,國內中科院經過長時間 評估也決定採用此類轉子引擎動力系統,但基於國防 科技常有保密、限制輸出、技術出口限制等各種特殊

的問題,因此轉子引擎的貨源有可能中斷,整體UAV 性能設計技術提升也可能受限,若能在國內獨立自主 開發一具性能優異的UAV之轉子引擎動力系統,進而 建立國防自主能量是為本研究之主要目。本研究針對 轉子引擎作設計分析,研究的範圍包含比較關鍵的幾 個技術領域:變距螺槳、燃燒系統、氣封、引擎缸體 結構與散熱、逆向工程研究及工程管理等。各子計畫 研究之重要性分列如下:

1.1 變距螺紫設計

中小型UAV之推進系統中,螺槳的氣動特性扮演 相當重要的角色,然而在UAV的發展過程裡,螺槳的 重要性經常是被忽視的, 它常常是與引擎一起選購 進來,裝上飛機,再測試性能,結果是不能完全滿足 一個精心設計的UAV任務需求。隨著作戰任務的複雜 化,UAV的飛行也相對的需要在不同的飛行速度、飛 行高度等條件下執行任務, 一具螺槳槳葉要在各種 飛行條件下均保持最佳的氣動特性應採用變距螺槳 的設計,本研究計畫建立變距螺槳的設計開發,準確 掌握螺槳的氣動性能,以及其與引擎匹配的特性,使 UAV的飛行性能將能高效的發揮。

1.2 三維暫態燃燒流場分析

轉子引擎的三維暫態燃燒流場分析以計算流體 力學(Computational Fluid Dynamics, CFD)為核 心,關鍵技術有兩點,首先是計算網格系統的建立, 考量到轉子引擎之運轉為一偏心之轉子於定子中運 轉以改變其燃燒室的過程,故必須重視複合式網格系統,加強燃燒室內邊界層流及渦流捕捉的精確性。其 次是轉子運動模式對於動力循環最佳方案的選取以 及轉子運動造成燃燒空間改變。本研究針對如何於模 擬技術上造成轉子運動,並使燃燒室空間改變,以利 未來利用此原理並加入燃燒模式,建構三維模型,求 得轉子引擎相關參數及燃燒特性。

1.3 轉子引擎氣封設計

目前應用於中山科學研究院之UAV動力系統以 氣冷式轉子引擎為主,由於技術層次較高,國內仍無 廠商開發此類商品,必需仰賴國外採購[1]。而介於轉 子及引擎缸壁間的氣封,如:頂封、側封及角封等, 更是影響效率的關鍵零組件。初期發展轉子引擎未能 突破的主要原因之一,即為轉子氣封與引擎缸壁材料 匹配發生問題[2],致使氣封磨耗壽命與自然頻率影響 到氣密效果,因此轉子引擎氣封之設計對其性能影響 甚大。

1.4 專利與工程管理

轉子引擎關鍵零件之自行開發,涉及專利保護之 問題,本研究應用系統工程與逆向工程的技術在不侵 犯UEL公司AR741-38 BHP引擎專利權的原則下,由 航空研究所提供現有零件,開發AR741-38 BHP引擎 此外需以系統工程與管理的方法來進行產品架構需 求分析、功能分析、需求配置及系統設計進行系統規 格之擬定,作為產品設計之目標。

1.5 轉子引擎缸體結構與散熱

轉子引擎缸體散熱以及散熱結構之輕量化,目的 是不但希望能提供足夠之散熱能力,又必須達到輕量 化,以符合UAV講求體積小,質輕,低油耗,高推進 效率等性能要求。在軍用方面因受限於技術之輸出, 目前UAV動力系統中的轉子引擎仍需向國外採購,除 了價格高昂外,當使用於軍事用途時,轉子引擎的技 術輸出將受到管制。基於旋缸式引擎有利於新世代之 戰備需求,有必要建立引擎散熱的分析技術與設計能 力,以因應未來任務之需求。轉子引擎轉速越高其性 能越佳,但因為排氣溫度過高,散熱問題對於引擎性 能的影響日益嚴重;基於此,本子計畫將著重在研究 轉子引擎缸體散熱以及散熱結構之輕量化,目的是希 望不但能提供足夠之散熱能力,且其散熱結構又必須 達到輕量化,以符合UAV飛行性能之要求。轉子引擎 係一個高度整合之系統,其性能提升或技術能力之建 立相當複雜,故必須以實驗以及計算模擬等方式互相 印證,方能逐步建立此方面之經驗與技術能力。

1.6 轉子引擎逆向工程

本計畫以特定轉子引擎做設計分析,因此需以正 向逆向工程整合之方法,針對不同零組件,進行設計 或掃瞄外型,整合正逆向工程之結果,並作出快速原 型之模型,方能進行關鍵零件之分析及設計。

2. 研究方法

2.1 變距螺紫設計

分析的工作將以計算流體力學方法為基礎,為了 了解變距螺槳的流場特性與性能,將以計算流體力學 方法來進行分析的工作,並以此建立的能量做為未來 變距螺槳設計研發的依據。流體力學計算分析將結合 黏性流解析軟體與網格產生法,求解細部流場以及性 能(含各種前進速度及轉速下變距螺槳之扭力、推 力、軸馬力等)。本研究所要採用的計算理論與方法 是架構在CFX計算流體力學軟體之上,首先建立針對 特定螺槳建立變距螺槳於角度16度至28度下之三維 物理模型,並建立CFD之計算網格,之後針對16度至 28度下七組變距角度於不同前進比下之流場計算,並 推算螺槳在不同槳距時之推力、扭力與馬力等,再與 特定UAV引擎的特性曲線做匹配分析。

2.2 三維暫態燃燒流場分析

鑑於轉子運轉是以轉子在定子上以一定速率偏 心旋轉以完成進氣、壓縮、爆炸及排氣完全動力循 環,過程中燃燒室容積會隨著轉子轉動而改變,在計 算流體力學(CFD)方面可以採用動態網格 (Dynamic-Mesh)技術配合轉子運動軌跡之控制,於逐 一個時間步階重新產生計算域網格並重新分配計算 每一網格元素節點之流動變數,先以二維球閥 (ball-valve)為模型,籍由動態網格技術之運用,探討 轉子於定子內不同位置造成計算域變動下之運轉情 形。

2.3 轉子引擎氣封設計

配合中山科學研究院選定之原型氣冷式轉子引 擎,依其材料、尺寸、轉速、燃燒室壓力及溫度等設 計及製造轉子氣封關鍵零組件。首先,本研究將採用 理論分析方式進行初步設計,並調整各氣封之尺寸及 選用適當材料。其次,將應用電腦輔助工程分析軟體 進行進階的分析模擬,以確認轉子氣封的結構強度、 磨耗及使用壽命、自然頻率與氣密效果等。最後,並 依設計完成之轉子氣封,委託國內、外[3]適當廠商依 研發規格製作各氣封零組件原型。

2.4 專利與工程管理

系統工程程序中之需求分析主要為分析任務與 環境;需求分析是調查與分解的一個程序。將籠統模 糊的敘述,轉化為清晰而簡潔的陳述,可以作為設計 時量化的依據。根據使用者需求,本系統的操作需求 分為1.實體特性 (physical characteristics) 2.性能 (performance) 3.操作性 (Operability) 4.次系統 (Subsystem) 5.可靠度(Reliability) 等五項,並針 對Wankel-type之rotary engine 進行美國的專利查詢。

2.5 轉子引擎缸體結構與散熱

轉子引擎缸體結構與散熱之研究包括計算分析 模擬及溫度量測實驗,在計算分析模擬之部份,本研 究進行之方式是利用CFD套裝軟體建立複雜的轉子引 擎內部各腔式之流場分析技術以及熱傳分析。本研究 藉由泛用的流體力學計算軟體FLUENT以及UDF程式 (User-Defined-Function) 控制引擎之旋轉、配合 Fluent內建燃燒模式、內部點火等計算旋缸式轉子引 擎內部各腔室的燃燒流場結構以及壓力溫度之變 化。轉子引擎的外殼類似花生米形狀,可以由理論之 推導而得;另外,轉子外型也相當複雜,必需要經過 人為修整方能避免干涉。當轉子引擎內的轉子偏心轉 動一圈時,將同時包含進氣、壓縮、點火(或爆炸)與 排氣等四個過程;因此,引擎則會產生三次動力輸 出,故其輸出動力較為連貫。整個座標系統之原點位 於外殼的對稱中心位置。轉子以逆時針方向旋轉,轉 速暫時設定為6000rpm。

在溫度量測實驗之部份,本部份之研究先以準維的熱力學模式(Quasi-Dimensional Thermodynamic Model)來進行引擎性能計算。在轉動過程中,三角形轉子將整個引擎分成三個區域,或四個區域;假設在每個區域內部的熱力學性質是均勻的,各區域與外界之間會有質量交換,透過進氣口與出氣口的氣體流動。各區域與轉子及外殼之間均有熱傳,透過轉子轉動,也有做功,所以這是多區域的非穩態模式。

2.6 轉子引擎逆向工程

以正向逆向工程整合之方法,針對不同零組件, 進行設計或掃瞄外型,取得各零件之幾何外型,最終 將整合正逆向工程之結果,並作出快速原型之模型, 作為初步設計之檢討及後續改善設計之目的。

3. 研究結果

3.1 變距螺槳設計

變距螺槳於角度16度至28度下之三維計算網格 可見圖一,其total element數為225萬,total node數為 65萬,針對不同變距角度之流場計算結果,訂定以下 性能參數:

Advance Ratio:
$$J = \frac{U}{nD}$$
 (1)

Thrust Coefficient:
$$C_T = \frac{T}{\rho n^2 D^4}$$
 (2)

Power Coefficient:
$$C_P = \frac{P}{\rho n^3 D^5}$$
 (3)

$$Effciency: Eff = J \frac{C_T}{C_P}$$
(4)

其中U為航速(單位:m/s),D為螺槳直徑(單位:

m),T為推力(單位:N),n為轉速(單位:rps),ρ為密 度(單位:kg/m³),P為功率(單位:W)。綜合不同變 距角度之計算結果繪製其性能參數對前進比之曲 線,圖二可見Thrust Coefficient之曲線,圖三可見 Power Coefficient之曲線,圖四可見Efficiency之曲 線,圖五可見馬力之曲線。

3.2 三維暫態燃燒流場分析

由於轉子引擎內轉子運行採偏心旋轉,故在發展 其軌跡程式需先由原點旋轉再發展至偏心旋轉,首先 建立基礎測試構型(如圖六),該模型由兩方塊構成, 其中外圍為一較大方形,長、寬皆為10mm,在內置 一較小為轉體,長、寬皆為2mm,經測試後成功完成 轉子定心轉動(如圖七)。

然真實之轉子運動除了原點旋轉外,尚有平移, 故將軌跡程式碼加入偏心度,使得轉子能如真實狀況 行8字型運動,為使偏心旋轉效果更顯著,建構基礎 測試構型二(如圖八),其中外圍大方形長、寬皆為 10mm,內置轉體小長方塊長2mm、寬1mm,執行軌 跡程式後亦成功完成轉子偏心連續運轉(如圖九),將 發展完成之軌跡程式運用在轉子引擎,可得轉子引擎 連續運動(如圖十)。

3.3 轉子引擎氣封設計

首先以SolidWorks將逆向工程轉子引擎之igs檔轉 為SolidWorks之CAD模型,再將模型轉檔至ANSYS Workbench之Design Modeler及Simulation中。進行 TDC及TDC+10°等位置之結構強度分析。分析過程中 採用半模以節省CPU時間,拘束條件為固定燃燒室之 外表面及轉子內表面。負載為燃燒室壓力=9 atm (TDC),燃燒室壓力=12 atm (TDC+10°),離心 力=7500 rpm,項封彈簧係數=10 N/mm,彈簧預 張力=10N其結果,可見圖十一。以ANSYS進行磨 耗分析模擬,P1、P2壓力資料由燃燒模擬獲得,一個 循環取20點資料,假設彈簧造成之施力為10N,轉速 為7500 RPM,項封材質為鑄鐵,模擬之Time step為 0.008Sec。磨耗量之依據為Archard wear equation:

 $Q = \frac{KW}{H}$ [2] • $\ddagger \neq Q$ = volume worn per sliding

distance, K = coefficient of wear, W = normal load, H= hardness of the softer surface, 其結果可見圖十二。 在氣封製作方面,頂封(Apex Seal)材質為 Fe-C-Si-Mo-Ti-V-Cr-Mn-Ni-Cu複雜合金鑄鐵。母材為 具變韌鐵組織的針狀鑄鐵,滑動面未經電子束激冷處 理,微硬度表面測試平均值41 HRC。角封(Corner Seal)材質為Fe-C-Si-P-Mo-Cr-Mn-Ni-Cu複雜合金鑄 鐵。金相為含磷的片狀石墨鑄鐵,彎角氣封圓周未鍍 鉻。微硬度表面測試平均值37 HRC。側封(Side Seal) 材質為Fe-C-Si-P-Mo-S-V-Cr-Mn-Ni-Cu複雜合金鑄 鐵,金相為波來鐵基地含雪明碳鐵及游離石墨[4],側 封及頂封之製造過程可見圖十三及圖十四。

3.4 專利與工程管理

使用者的需求是以逆向工程進行引擎的開發,因 此引擎的操作環境是設定在試驗室,將操作需求轉換 為功能分析輸入條件後,根據功能分析的結果,第一 層的功能分析流程圖如圖十五,其中包括:運轉前檢 查、使用啟動器啟動引擎、運轉引擎至Idle、IRP、 Max與熄火,其中主要的功能(Process Idle-IRP-Max-Idle) 展開如圖十六所示,圖十六的功 能流程中,涵蓋了四個過程:進氣(Intake air)、壓 縮(Compress air與Inject Fuel)、點火膨脹(Ignition 與Expand air)、與排氣(Exhaust air)等,進氣時, 在控制室以伺服器調整氣門的角度,而本系統的偏心 軸(Eccentric shaft)的位置由0°轉到360°。壓縮時, 偏心軸的位置由360°到540°。而在點火膨脹時,偏心 軸的位置由540°轉到720°,排氣時,偏心軸的位置由 720°到1080°。在這過程的同時,滑油 (oil) 隨著不 同轉速而注入,並隨時有空氣進入來冷卻系統。配合 上述功能,需要七個主要的次系統來執行,應用Vitech CORE軟體建立操作需求、功能與實體元件的追蹤關 係圖,此圖說明如何將操作需求,以功能流程來表 現,即如何從「做什麼」轉換成「如何做」,由功能 流程來符合操作需求,以系統元件來執行功能,確保 能獲得符合需求的系統設計,追蹤關係圖如圖十七及 圖十八所示,另外針對Wankel-type之rotary engine 進 行美國的專利查詢,完成由1970年代到2009年執行專 利搜尋及分類的工作,與Wankel-type相關專利僅有四 十幾篇,均分佈於潤滑、點火及冷卻技術上,其專利 所有權均不屬UEL的AR741-38BHP引擎的專利權。

3.5 轉子引擎缸體結構與散熱

轉子引擎實際運轉過程中加入點火後,引擎各腔 室之流場結構、溫度、以及內壁面之溫度在不同瞬間 的變化。將工作流體設定成甲烷 (CH_4) 與氧氣 (O_2) 之預混合氣體,混合氣體中甲烷的質量分率為 0.055, 而氧氣則為0.217。在進氣過程,因轉子轉動 預混合氣體先被吸入A腔室內,再經過壓縮過程後點 火。圖十九顯示:引擎內壁面上之網格用數字從0開 始順時針增加至1612-1616,繞一圈後又回到0,總網 格數目的改變是因轉子轉動時各腔室肢體積會改 變。當轉子轉動角度為0°時,外殼壁面網格編號0~210 及編號1410~0是屬於A腔室壓縮點火區域,所以溫度 分佈範圍接近1000K。外殼壁面網格編號210~808則 是屬於進氣段的B腔室,溫度分佈範圍為300K,而編 號808~1410則是C(排氣)腔室範圍,因為上一瞬間點 火燃燒後造成C腔室內溫度維持在1400K。隨著轉子 繼續逆時針方向轉動到24°,A(燃燒)腔室範圍介於編 號0~110與1212~0之間,從圖十九得知點火後A腔室 區域外殼壁面溫度整體升高,其中在轉子轉動至12° 時,因為受到轉子逆時針轉動的影響,A腔室內燃燒 會從點火處往腔室內較廣區域(該區域壓力比較小) 燃燒,當較廣區域內的燃料燒完後才會往該區域內較 狹窄區域燃燒(該區域壓力比較大),所以才會導致 網格編號210區域附近溫度瞬間升高至3700K。B(進 氣與壓縮)腔室引擎外殼範圍則是隨著轉子轉動而增 加,所以圖十九中進氣段範圍對應地擴大且溫度維持 在300K。C腔室外壁格點分佈則是介於808~1212之 間,隨著轉子持續轉動,該分佈區域的溫度呈現出下 降趨勢,是因為C腔室面積開始縮小而加速排出燃燒 過後C腔室內的氣體。

當轉子每轉六度時,以該瞬間的內壁面溫度分佈 為輸入之條件,求解外殼模型內各點之穩態溫度分 佈;並且比較有、無散熱外環時,模型中溫度分佈的 差異性,進一步了解散熱外環之作用以及其影響程 度。圖二十至圖二十二中顯示:(a)無散熱環時,以 及(b)有散熱環時,散熱鰭片中的溫度分佈。轉子運 轉到12°(a=12°)時,當火焰傳播到爆炸腔全部,壁面 温度明顯提升。在爆炸腔外圍無散熱環模型下的散熱 鰭片尾端溫度超過2500k而爆炸腔外圍有散熱環模型 下的散熱鰭片尾端溫度介於2300k至2500k,有散熱環 模型因為接觸外部空氣面積大於無散熱環模型,所以 在爆炸腔外部的散熱鰭片在有散熱環模型的溫度比 無散熱環模型的溫度來得低。而有散熱環模型在腔室 壁的温度介於2300k至2500k與無散熱環模型在腔室 壁的温度超過2500k比較,溫度更為降低(圖二十 一)。當轉子繼續運轉到18°(a=18°)時,火焰燃燒完 畢,在爆炸腔中反應的工作流體已經開始膨脹,溫度 也開始傳遞到膨脹腔外部的散熱鰭片,所以比上一個 瞬間a=6°時溫度來得低。並發現無散熱環模型溫度介 於2300k至2500k的區域比有散熱環模型來得大。延續 當轉子角度運轉到12°的效果,有散熱環模型比無散 熱環模型散熱鰭片的溫度分佈更低且均匀(圖二十 二)。

溫度量測之研究以準維的熱力學模式 (Quasi-Dimensional Thermodynamic Model)來進行 引擎性能計算。在計算熱傳時,本文將整個引擎的外 殼分為兩區,靠近進氣與壓縮的部分溫度較低,為低 温區;靠近燃燒與膨脹的部分溫度較高,為高溫區。 本文假設均匀的熱傳係數,且外殼與轉子的溫度也是 均匀的。在進氣,壓縮,與排氣過程中,因氣體溫度 改變,轉子與氣體之間會發生熱傳,但轉子會傳往冷 卻氣流,只能與氣體進行熱傳,外殼與外界有直接接 **觸**,可將熱傳往四周的環境。轉子在轉動過程中,氣 缸內的溫度變化最高溫度可達1800K。靠近燃燒室區 域的熱傳量變化,3000rpm時,引擎的總熱傳率約為 6.94 kW,約佔燃燒能量的33%。在燃燒膨脹排氣兩側 區的汽缸溫度可達566K,但在進氣壓縮兩側區,汽缸 温度只有347K。本文並進行實際引擎的溫度量測,圖 二十三所示為量測結果,共有四個不同測點。由圖可 看出引擎機殼表面溫度隨著轉速增加而提高,最高溫 度發生在點火火星塞附近,可達200℃,其他位置的 溫度最高約為100℃。圖二十四所示則為計算與量測 結果的比較,由圖可看出,當冷卻風扇的流速為 50m/sec時,本文所預測的缸壁溫度與量測結果很接 近,顯示本文所發展的熱傳模式可以用來預測引擎在 高速運轉下的熱負荷。

3.6 轉子引擎逆向工程

本計畫由於以特定轉子引擎做設計分析,因此針 對不同零組件,進行零件外型掃瞄,進行零件圖之繪 製,所繪製之零件圖可見圖二十五及圖二十六,此外 對轉子引擎之組裝進行分析並繪製組裝圖,轉子引擎 零件之爆炸圖可見圖二十七,再進行關鍵零件之分析 及設計。

4. 結論

4.1 變距螺槳設計

本研究針對轉子引擎變距螺槳之計算流體力學 結果顯示其各性能參數曲線與該螺槳之實驗值大致 吻合,誤差值在可接受範圍內,因此可以此性能參數 曲線與引擎特性作匹配,設定變距機構之運作條件及 邏輯,達成針對不同飛行條件作高性能螺槳推進之目 標。

4.2 三維暫態燃燒流場分析

本研究以球閥測試軌跡程式可行性,為充分利用 動態網格技術之特點,必須採用可調適之結構化四方 形網格包覆整個計算域,所建構之網格系統於動態網 格技術的應用時,將轉子與計算域內之四角形網格系 統視為一體而隨著運動軌跡調整其相對位置,逐一於 時間步階皆重新生成網格,如此可精確獲得計算域內 各項參數變化情形。

4.3 轉子引擎氣封設計

- 已成功將逆向工程 igs 檔轉以 SolidWorks 轉為 3D 模型,並轉入 ANSYS 進行結構及磨耗分析。
- 已分別與國內及國外廠商合作以製造各轉子氣 封之原型,後續將確認其材料之硬度與耐磨度。

4.4 專利與工程管理

本研究完成AR741-38 BHP引擎系統功能分析、功 能流程方塊圖、元件階層體系圖、元件介面關係圖, A規格與系統審查檢核表訂定,此外與Wankel-type相 關專利僅有四十幾篇,均分佈於潤滑、點火及冷卻技 術上,其專利所有權均不屬UEL的AR741-38BHP引擎 的專利權。

4.5 轉子引擎缸體結構與散熱

轉子引擎內壁面之溫度大小與分布隨著各腔室 之變化而有高低之變化。在燃燒與排氣等兩腔室附近 之溫度相對較高,大約在500-3000°C之間變化。至於 散熱鰭片之分佈,在相對的位置附近也具有較長的散 熱鰭片或較大之散熱面積,促使散熱效能提高。此 外,在散熱鰭片之頂端加上一外環者,其作用除了增 加散熱量、降低鰭片溫度之外,此環還可以增強對於 汽缸幾何形狀的拘束,避免高、低溫差所產生之熱變 形(膨脹或收縮)導致氣缸幾何形狀變形太大,進而產 生轉子與氣缸內壁面之干涉而停止轉動之現象。本模擬之大氣溫度係以25°C為基準,若以高空之溫度為基 準,則鰭片之溫度將可以更低、其幾何變型量將更小。

本 部 份 之 研 究 以 準 維 的 熱 力 學 模 式 (Quasi-Dimensional Thermodynamic Model)來進行引 攀性能以及熱傳率之計算。結果顯示:當冷卻風扇的 流速為50m/sec時,本文所預測的缸壁溫度與量測結 果很接近,顯示本文所發展的熱傳模式可以用來預測 引擎在高速運轉下的熱負荷。

4.6 轉子引擎逆向工程

1984.

本研究已完成特定轉子引擎之逆向工程分析,繪 裝各零件圖及組裝圖,可以此作為基礎整合正逆向工 程成果,輸出製成快速原型。

5. 誌謝

感謝國家科學委員會及國防部軍備局中山科學 研究院提供本計畫之補助及支援。

6. 參考文獻

1. http://www.uavenginesltd.co.uk/

2. Yamamoto, K., "Rotary Engine", Toyo Kogyo Co. Ltd., 1971.

3. <u>http://www.hurleyrotary.com/index.php</u>

4. 中山科學研究院引擎氣封片材料試驗報告 5. Chang, L. K. and Sullivan, J. P., "Optimization of Propeller Blade Twist by an Analytical Method", *AIAA Journal, Vol. 22, No. 2, pp. 252-255*, Feb.

 陳世雄,馬淮龍,鄭敦仁,"無人飛機螺槳推進 系統的性能分析與匹配",中科院委託研究計畫, 1999年6月.

圖一 變距螺槳之計算網格

國防科技學術合作計畫成果發表會論文集 中華民國九十八年十一月二十六日

桃園、龍潭

環時,散熱鰭片中的溫度分布

圖二十七 轉子引擎零件爆炸圖