(一)流體力學與空氣動力學

目前的實驗設備有開放式低速風洞、循環式低

維超音速噴流設備、震波 管與水桌等,與實驗設備 配合使用的儀器有二維雷 射測速儀、震波風洞、熱 線測速儀、雷射全像及先 進雷射測速儀、自動化壓 航太科技中心穿音速風洞 力量測系統、六力平衡儀 及高速數據數收集系統等。

項測試儀器與設 備提供了在高速 空氣動力學、渦 動力學與非定常

渦輪機械、生醫應用與噪音防治等領域上研究發展 所需。

(二)燃燒、熱傳與噴射推進

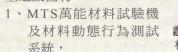
除一般傳統設施外 包含有:

- 1、流體視流化研究設備 高速攝影及錄影機 影像處理系統(Ekta motion analyzer) Schileren 光學系統。
- 2、粒度,速度分析設備
- Phase/Doppler粒子分析儀、LDA測速儀、及熱 線和熱膜測速儀等。

液態火箭衝擊霧化過程研究

3、溫度分析設備:熱電耦,電射全像干涉儀,紅

外線影像溫度測試系統。


- 4、氣體成份分析設備。
- 5、聲波量測系統。
- 6、數據蒐集及分析設備:類比/數位信號轉換系 統,自動化測試系統,PC級數據蒐集系統。
- 7、雷射 Rayleigh 散射系統。
- 8、PLIF氣體溫度及成分濃度分析系統。
- 9、高壓火焰動力研究設備
- 10、金屬噴霧實驗設備

(三)結構與材料:

分結構及材料兩大方面,結構實驗及結構光學 實驗室之設備有:

- 1、振動模態分析系統,
- 2、撞擊及落錘衝壓測試系統,
- 3、壓電式及光學式之量 測及制動設備。

材料實驗及製造實驗 室之設備有:

2、材料成形及裁剪之設

- 3、C-Scan及X-Ray等材料 非破壞檢測儀器,
- 4、射出成型儀、樹脂轉 注成型設備、複材修 補、三維先進複材製

離心泵葉片應力分析

此外,兩實驗室並備有多部個人電腦及工作 站,可配合相關程式軟體(NASTRAN、IDEAS、 ANSYS CATIA MARC LS-DYNA LAB-WINDOW、MATLAB等)做為結構設計分析及實驗 資料擷取之用。

(四)導航與控制

本領域實驗室有:

1、控制系統實驗室-包括基礎應用控制實驗與微 電腦控制實驗,主要有溫度控制,氣壓伺服控

制,直流、交流伺服馬達控制等

- 2、飛行模擬實驗室-包括三軸飛行模擬平台,及 數位即時控制電腦。
- 3、導航控制應用實驗室-包括衛星導航儀、磁浮 系統、慣性感測元件(迴轉儀、加速計等)及訊 號處理設備。
- 4、(4) 飛行器製作實驗室:包括Autogyro飛行 器、遙控直升機、動力滑翔機、超輕航機。
- 5、通訊與導航系統實驗室-全球衛星定位系統 通訊與訊號實驗系統、無線感測器網路系統、 衛星航行測試平台、GPS接收機自主完整性預 測系統、即時接收機自主完整性監視系統。

計算機室

為支持全系在研究、 教學及行政上之需要,本 室以高速乙太網路為基 礎,連接校園、國際學術 網路,建立完整的網路系 統,便於電子郵件傳遞、 研究資源之交換、擷取 與應用。本室軟體資源有 電腦教室

Patran & Nastran \ Matlab \ Tecplot \ CATIA \ ProE 等,此外本室設有CATIA教育訓練中心,備80部以 上之PC,為一專用CAD/CAM/CAE電腦教室,期 以培養使用電腦輔助設計與分析系統之數位化的工 程人才,使其具有高效率及競爭之能力。

CATIA設計訓練課程

整理及保存國內外航空太 空科技之相關資料,以提 供本系師生及對航太科技

本室館藏以西文為

主,計有書籍12000冊,科技期刊300種,教學影片 及研習會實況錄影帶600卷。硬體設備則包括有: 圖書安全系統、查詢用電腦及複印機等。服務項目 有借還書及參考諮詢等。

光電實驗室

光電科技在航太領域中也是重要的一環,本室 分隔為三個空間,分述如下:

- 1、電子實驗室:讓學生實習電子電路之基本特性 和製作電路板,並熟悉基本電子儀器之使用。
- 2、光學實驗室:透過光學基本元件之架設和調 整,在光路之變化中領悟光學基本特性
- 3、儀器檢修室:本系儀器多,依賴廠商維修不僅 費用不少,時效上更是延誤,將本室自我保養 維修之能力延伸,結合教授、同仁們之力量, 為師生們處理儀器測試設備之維修、改造,有 特殊實驗設備之需求亦協助設計及製作。

機械工廠

本工廠備有立式綜合加工中心機,三次元電腦 輔助製作軟體、車床、銑床、旋臂鑽床、及各式電 動工具、手工具、刀具和測量儀器,支援本系各教 學組實驗所需之設備與測

試元件之製作。此外,本 工廠亦支援大學部工廠實 習與CNC數值控制之課程 並利用暑假開授工廠安全 課程,教導學生正確的而 安全地使用儀器設備

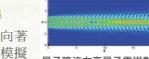
航太科技中心

座落於台南縣歸仁鄉,佔地約22公頃;距離本 系館14.5公里,距離仁德交流道約8公里。設置之 大型實驗設備有:穿音速風洞及燃燒實驗室、水洞 實驗室、動態模擬之低速風洞實驗室、雙推進實驗 室、飛行控制實驗室、結構及材料實驗室、噴霧成 型實驗室、防火實驗室、實驗通訊酬載實驗室、福 爾摩沙衛星追蹤站等,提供

有志於航太科技者一個絕 佳的研究環境,同時藉著 完整規劃的大型實驗室, 本系得以推動實務之研究 計劃,培育務實、自信且 空科技人才。

福爾摩沙衛星追蹤站

學術研究

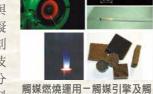

本系在研發上注重軍民通用科技之配合,鼓勵 教授進行跨專長之合作計畫,如無人載具之飛機研 製、氣渦輪引擎技術以及飛機維護等整合型之研究 計劃;積極參與國家太空計畫室之衛星計畫,以及 推動微機電與民航領域的研究; 自九十一年起加入 由丁肇中院士所主持之「反物質探索研究」團隊, 在跨領域的研究上更跨出了一大步

本系研究教學上強調 力、熱傳、結構、材料、 電子、控制等)與航太工 程學(如空氣動力學、氣 體動力學、航空發動機 飛行力學、飛具設計、太 空力學等)並重,兩個研

究所之研究領域概要分述如下: 航太所

一)流體與空氣動力學

本領域之研究方向著 應用於流體力學、空氣動機率密度分佈圖

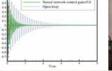


量子噴流在高量子雷諾數時之

力學、氣體動力學及數據或影像處理,(2)飛機、彈 體、無人飛行器等空氣動力性能分析、風洞測試與 應用研究,(3)空氣噪音與流體結構物引致振動研 究,(4)流體力學與震波動力學在醫學工程應用研 究,(5)微流體與生物晶片、微機電系統應用及綠色

能源研究。

本領域之研究方向著 重於:(1)自主航空引擎與 火箭推進系統研發與模擬 實驗,(2)先進節能減碳創 新風力太陽能與淨煤科技 研究 (3)燃燒火焰理論分 析及雷射光學量測、燃料 電池研究,(4)微推進與微 動力系統及微燃燒研究,


媒微推進器

(5)微奈米製造工程技術、噴霧技術研究、三維快速 成型,(6)醫用流力、生醫、微流應用。

(三)結構與材料

本領域之研究重點方向包括:(1)結構動力, (2)結構最佳化,(3)轉子結構,(4)複合材料分析、 測試及製程,(5)有限元素法,(6)結構破壞分析與 檢測,(7)智慧型結構,(8)非線性力學,(9)微奈米

料,(10)機 光電元件

研究方向可分成:(1)基於實驗數據之控制設 計,(2)強健性控制理論,(3)飛行導引及姿態控 制,(4)磁浮應用技術,(5)無人飛行載具製作與

振動平台追蹤定位與減振控制

可研發之全自動電腦操

駕駛儀技術, (7)CNS/ATM技 術,(8)精密機械 定位系統,(9)飛 行模擬器,(10)

(11)衛星全球定位系統,(12)影像伺服系統與應 用,(13)大氣飛行最佳軌跡,(14)量子與奈米系統

(五)太空系統工程

目前之研究方向為探空火箭應用與酬載可行性 分析、微衛星系統研發、衛星追蹤與影像數據處理 及分析、前瞻性衛星推進系統、 GPS/INS導航控制 及應用研發。

(六)跨領域研究

為因應國家奈米技術發展 本系集合流力、結構、熱燃、控 制等專家並聘請教授共同組成微 機電系統(MEMS)跨領域研究團 隊。研究課題包括微形遙控飛 機、感測及制動器、生物及醫學 工程技術及微機電製程等。

(一)機務維修與系統品保

主要研究方向包括:(1)航空器故障之診斷, (2)發動機故障之診斷,(3)適航驗證,(4)系統可靠 性與品保,(5)航空器修護排程規劃,(6)發動機修 護排程規劃等。

(二)營運規劃與飛航管理

主要研究方向包括:(1)航空營運管理,(2)場 站設施與空域規劃,(3)民航法規與航空事務,(4) 飛航管制系統等。

(三)飛航安全與人為因素

主要研究方向包括:(1)航機務操作風險,(2) 飛安預防與改進策略,(3)航空事故調查作業技術。 (4)飛航人因工程,(5)航空生理與心理,(6)飛航作 業環境評估分析等。

(四)飛航導航與通訊

主要研究方向包括:(1)廣域性導航及通訊 (SBAS),(2)地區性(近場)導航及通訊(GBAS),(3) 跨國區域性導航輔助增強系統合作、評估、法規及

and Astronautics

本系前身為成功大學機械系航空組,於六十五 年正式獨立為航空工程學系;七十二年教育部專案 在本校成立航空太空研究所;七十四年為使大學部 與研究所更能緊密連貫配合,航空系更名為航空太 空工程學系,簡稱為航太系。

本系於七十六年七月奉行政院核定在歸仁地區 籌建『航空太空實驗場』,復於八十二年六月為配 合國家航太工業發展並達設備共享目的,以航太實 驗場為基礎成立校級單位之航太科技研究中心;其 任務為結合校內人力資源,進行前瞻性基礎研究、 人才培育,並推動產、官、學、研合作計畫以開發 產業需求技術。

本系於九十一年八月設置碩士在職專班,協 助業界與軍方培育航太與民航技術之高科技人才; 繼而考量落實我國飛安進步之需,以及提昇民航研 究動力,培育優秀民航專業人才,以提高我國民航 運輸之國際競爭力,旋於九十三年十月奉准於本系 之下增設民航研究所,從九十四年起招收碩士生。 自此本系除大學部之外,設置航太所與民航所兩個 研究所;另本系於101學年度第一學期承辦「能源 國際學士學位學程」,教育目標在於建立學生對各 式能源的完整認識,明白各式能源科技的優點與缺 點,從而建構一個多元且互補的綠色科技思維。

航太系目前研究領域概分為:(1)流體力學與 空氣動力學、(2)燃燒熱傳與噴射推進、(3)結構與 材料、(4)導航與控制、(5)太空系統工程、(6)微機 電系統及奈米技術、(7)能源技術。

民航所研究領域概分為:(1)機務維修與系統 品保、(2)營運規劃與飛航管理、(3)飛航安全與人

學生自行設計製作之無人飛機

本系特色

本系為全國唯一將航空、太空、民航及微奈米 機電融合於一的國立大學學系,更致力於推動國際 化,除開授英語教學課程外,並招收外籍大學生與 研究生。

在教學研究設備方面:除各專業的研究領域 之實驗設備外,並有各領域共同需要之支援系統, 如:計算機室、圖書室、光電實驗室、機械工廠 等。此外,本系在歸仁校區航太科技中心設置有完 整規劃的大型實驗室。在學術研究方面:本系積極 推動國際化,目前已與法國IPSA…等多國機械系及 航太系簽訂學術合作協議,進行實質上的交換學生 與教師學術研究交流。

師資陣容

職稱	姓名	學 (經) 歷	專長
名譽教授	邱輝煌	美,普林斯頓大學博士	燃燒學、噴射推進、流體力學
	謝勝己	美,德州大學(奧斯汀校區)博士	空氣動力學、飛具設計
	王覺寬	美,喬治亞理工學院博士	聲學、燃燒學、噴霧技術、微機電系統
講座教授	胡潛濱	美,伊利諾大學(芝加哥校區)博士	複合材料力學、破裂力學
特聘教授	陳介力	英,曼徹斯特大學博士	控制、影像處理、最佳化控制
	趙怡欽	美,喬治亞理工學院博士	燃燒學、聲學、雷射診測、微推進系統
	苗君易	美,布朗大學博士	實驗流體力學、紊流學、航太品保
	楊世銘	美,加州大學(柏克萊校區)博士	線性與非線性振動、結構穩定與控制
	楊文彬	美,俄亥俄州州立大學博士	製造、複合材料
	楊憲東	國立成功大學博士	飛行控制、量子控制、奈米量子系統、航電系統、
			飛行模擬
	鄭金祥	大同工學院博士	質子交換膜燃料電池最佳化設計及性能測試、奈
			米系統之分子動力學模擬
	陳維新	國立成功大學博士	能源工程、環境工程、機械熱流
教授	張克勤	美,伊利諾大學(芝加哥校區)博士	燃燒學、兩相流、紊流
	李定智	美,密西根大學博士	醫用流體力學、微流體、噴射推進
	景鴻鑫	美,俄亥俄州州立大學博士	飛航人因工程學、人機動力學、文化衝突
	林三益	美,明尼蘇達大學博士	計算流體力學、數值分析、應用數學
	江滄柳	美,伊利諾大學(芝加哥校區)博士	燃燒學、能源科技、噴射推進、計算熱流學
	江達雲	美,加州理工學院博士	塑性力學、系統辨識
	崔兆棠	美,哥倫比亞大學博士	結構動力學、轉子動力學
	賴維祥	國立成功大學博士	噴射推進、快速原型、新能源研究、航空運動
	夏育群	美,愛荷華州立大學博士	邊界元素法,電腦輔助設計與分析,計算力學
	陳文立	英國曼徹斯特理工學院博士	計算流體力學、紊流學
	呂宗行	美,加州大學(洛杉磯校區)博士	微熱流元件、微機電系統、微航電感測器
	詹劭勳	美,史丹福大學博士	控制、衛星導航、通訊系統
副教授	王振源	美,布朗大學博士	熱傳學、材料處理
	林穎裕	美,維吉尼亞理工暨州立大學博士	航太控制系統模擬、機電控制系統設計與實作
	譚俊豪	美,加州大學(柏克萊校區)博士	控制、動力學
	袁曉峰	美, 賓州州立大學博士	燃燒反應動力、火箭推進、雷射分析、飛行數據
			分析與風險管理
	陳世雄	美,普渡大學博士	渦輪機械、噴射推進、飛機設計、無人飛機自動
			飛行、風力發電
	李劍	美,伊利諾大學(香檳校區)博士	太陽光電、紅外線感測器、紅外線雷射、微機電
	丁净己	学,小上 宏 某一段语(系統陀螺儀
	王偉成	美,北卡羅萊大學博士	機械熱流,生質能源整合,能源轉換
	李約亨	國立成功大學博士	能源科技技術及應用
	吳志勇	國立成功大學博士	機械熱流領域噴霧與燃燒推進、生質燃料、雷射

職稱	姓名	學 (經) 歷	專長
助理教授	李君謨	國立成功大學博士	控制系統設計
	彭兆仲	國立成功大學博士	線性 / 非線性控制系統分析與設計
	葉思沂	國立台灣大學博士	仿生飛行、微機電製程技術、流體可視化與流場 量測技術
	賴盈誌	國立成功大學博士	飛行力學、導航控制、無人飛行載具系統、飛具 設計
	闕志哲	加拿大維多利亞大學博士	計算流體力學、環境系統熱質傳遞
	許書淵	美國,維吉尼亞理工暨州立大學博士	太空複合結構最佳化設計、創新機械系統分析、 複合結構強度分析、超音速飛行器及火箭引擎陶 瓷複合結構分析

教學目標

培養航空、太空與民航高級專業人才,使其 具備尖端科技之基礎學理及專業知識,擁有相關設 計、分析與執行能力,並配合航太之高度跨領域特 質,著重研發創新及系統整合之訓練,造就優質與 具有社會責任感之航太人才。

課程規劃

航太科技乃屬整合性之高科技,在大學部的課 程安排上除一般通識教育及工學院共通的課程外, 主要的專業科目包括:流力及空氣動力、燃燒與熱 傳及噴射推進、飛具結構及材料、導航與控制。課 程方面依下述三大綱要規劃:

- 一、因應國家推動航太科技之政策,配合國科會及教育 部工程教育改進計畫,改進大學部及研究所課程。
- 二、加強太空系統工程、民航科技、航太製造、航電與 機電整合程、微機電系統領域等之課程
- 三、加強大學部航太實驗及實作課程

另外,為具體提昇產學合作能量,102年2月 開始與長榮集團建立「民航工程學程」,結合長榮 集團與成功大學航太系能量,建立民航事業所需之 高階技術人才的培訓中心。此外,並與華航、長榮 航空、漢翔公司、工研院綠能所、太空中心、南科 帆官公司、復興航空等領導產業,簽署合作協議

業實習管道,並 產學教育接軌來開 啟本系與產業界的 全面產學合作

學生活動

分區迎新、迎新宿營

本系專為新生而辦,協助新生們在「分區迎 新」活動中了解自己的學系與直屬學長;「迎新宿 營」則是本系與他系合辦的活動,藉此增進新生與 全系還有他系的認識。

親親同樂會:

專為全系學生而辦,藉以增加全系的向心力。

工業參觀:

每年都會不定期舉辦數次,由本系教師主辦, 帶領同學們實地了解我國的工業體系等。

本系與國內其他六所航太相關學系的聯誼活 動,每年定期由各校系輪流主辦,經由運動場上的 君子之爭來促進各校系的友誼。

成大航太營:

招收對象為高中生,於每年七月初舉辦為期一 週,由大二學生負責,除了基本的航太學理講授之 外,還安排各項與飛機、火箭有關的趣味競賽以及 參觀國內飛機修護廠或機場,藉以傳播航太種子。

除了較專業的航空社、航太系學會之外,本系 亦成立了籃球、足球、羽球、桌球、排球、撞球等 系隊,在每年的校慶或航太週活動上大展身手。

畢業出路

本系是國內國立大學中唯一的航太系,航太工 業又是國家之政策性工業,加上本系所安排的大學 課程兼顧理論、實驗、設計及實習,因此畢業生無 論是深造或就業皆表現十分優異。

深浩:

由於本系之師資與設備十分優異,每年大學 部畢業生選擇留系繼續深造的比例相當高;除此之 外,本系所學範圍相當廣泛,亦有學生選擇機械 電機、應力、微機電、太空科學、材料、交管等研 究所深造或出國留學。

本系畢業生選擇就業者可考慮在中科院、工研

院、航空公司或國家太空中心等機構服務;此外, 也可選擇就職航太零組件、精密機械、半導體、電 子封裝及其他與電機、機械及材料等相關之行業。 在公職或證照方面,除與電機、機械及材料等相關 之公職考試外,本系畢業生可報考民航局特考、航 空技術師,或航空公司之飛行員(需參加相關飛行 員訓練)、機務維修員等等。此外,本系每年均提 供相關商用工程軟體訓練課程,培育數位化之工具 軟體人才,修業及格者發給證明,對學生在職場之 競爭力助益甚大。

未來發展

本系教學與研究概分為流體力學與空氣動力 學、燃燒/熱傳與噴射推進、結構與材料、導航與 控制、民航技術、太空科技、微奈米機電等;未來 並加強跨領域之合作發展,使學生具備深入之科技 專業與廣闊之尖端知識,除傳統之飛機及衛星科技 外,亦朝微飛機及微衛星的系統發展,引領我國航 太科技橫跨巨觀及微觀雙世界。